I am trying to create a CNN to classify the SVHN dataset but run into an incompatible shape error when creating my model: Incompatible shapes: [128,3,3,10] vs. [128,1]. How do I fix it?
model = Sequential([ Conv2D(filters=8, kernel_size=(3, 3), activation='relu', input_shape=(32, 32,3 name='conv_1'), Conv2D(filters=8, kernel_size=(3, 3), activation='relu', padding= 'SAME', `name='conv_2'), MaxPooling2D(pool_size=(8, 8), name='pool_1'), Dense(64, kernel_regularizer = regularizers.l2(0.5),bias_initializer='ones', activation='relu' , name='dense_1'), Dropout(0.3), Dense(64,kernel_regularizer = regularizers.l2(0.5) , activation='relu' ,name='dense_2'), BatchNormalization(), Dense(64, kernel_regularizer = regularizers.l2(0.5) , activation='relu' ,name='dense_3'), Dense(10, activation='softmax' ,name='dense_4') ]) model.compile( optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics= ['accuracy' ]) history = model.fit(train_images,train_labels , epochs = 30 ,validation_split = 0.15, batch_size= 128, verbose = False )